您现在阅读的是
哇叽文学www.wajiwenxue.com提供的《我有科研辅助系统》 458 《科学》,正式启航!(万更求订阅)(第3/5页)
池的光吸收边变化的曲面图像。
因为能量损失有五个档次,所以对应的三维立体坐标系中就有五个曲面。
许秋为了表述直观,还给五个曲面染了色,从蓝到红分别表示光电转换效率逐渐增大。
这张图片看起来比较高端,但其实背后的计算过程并不复杂。
顶电池的光吸收边,可以通过公式换算出有效层材料的禁带宽度,禁带宽度再减去假定的能量损失,就得到了开路电压。
禁带宽度已知,外量子效率已知,可以通过积分计算得到短路电流密度。
最后,填充因子是给定的075。
三者相乘,就得到了最终的光电转换效率。
理论预测的结果还是比较美好的。
在光吸收边为1100纳米,外量子效率75,填充因子075,能量损失06电子伏特的条件下,有机光伏叠层器件的效率可以达到20!
20!
然而,理想很丰满,现实有点短。
现实的情况是,每个值都比理想情况下差5左右。
比如,光吸收边实际上只有1000纳米,外量子效率只有70,填充因子只有070,能量损失是065电子伏特。
从而导致,现实里的结果差不多就是20095095095095=163。
而现在都还做不到163呢。
不过经过许秋团队的努力,已经非常的接近这个数值了。
剩下的b、c、d三张图片,就是把三维坐标系之下立体的a图,变为二维坐标下的平面图。
也就是分别固定外量子效率、顶电池的光吸收边,以及每个子电池的能量损失,三个变量其中的一个,考察光电转换效率随另外两个变量变化的二维图谱。
其中,光电转换效率同样通过之前的蓝红颜色进行表示,并绘制出等效率线。
值得注意的是,在这些半经验分析图片中,许秋都把填充因子恒定为075。
一方面,是因为填充因子相对比较特殊。
它虽然是变量,但影响它的因素非常多,不是很好优化和界定,不像短路电流密度和开路电压,可以认为直接和材料禁带宽度相关。
理论上讲,填充因子主要受到太阳能电池器件本身的影响,最终得到的器件串联电阻越大,并联电阻越小,填充因子就越小。
但实际上,不论是串联电阻还是并联电阻,都是在涂膜后才测试出来的,在涂膜前怎么让这两个数值随心意而改变,是比较难以做到的。
换言之,器件填充因子的优化,几乎是纯粹的结果导向。
填充因子比较小的体系,用到的光电材料以及加工工艺,在发展的过程中会被自动淘汰,或者自动转为冷门的领域。
比如,全聚合物有机光伏的n2200的体系,填充因子通常会比较低,甚至只有05、06左右,现在做这个领域的研究者就非常的少。
另一方面,也是因为在一个三维立体图谱中,只能有三个自变量,如果再加上一个填充因子作为变量,就需要用到四维坐标系了。
四维坐标系,许秋就算想画,也画不出来。
况且,现在虽说是三个自变量、一个因变量,其实也是有限制的。
其中一个自变量“每个子电池的能量损失”并不是连续变化,而是以01电子伏特为间隔跳动变化的。
如果这个变量也连续变化,那么最终得到的就是连续曲面。
点动成线,线动成面,面动成体。
连续变化的曲面就会等效为一个立体的结构。
此时,“每个子电池的能量损失”变量,将取代光电转换效率成为新的z坐标。
而原本是z坐标的效率将“坍缩”为颜色,或者是一个强度值,从而得到一张真·立体图谱。
在纸张这种二维空间中,是无法表达“真·立体图谱”这种三维图谱的。
这也是之前“每个子电池的能量损失”非连续变化的原因。
第二张图片,单结器件相关的表征。
这个和平常发的文章没什么太大的区别,相对比较常规,许秋暂定做四张图片:
顶电池、底电池有效层材料的分子结构;
顶电池、底电池有效层的光吸收光谱;
单结顶电池、底电池器件各自的j-v曲线;
单结顶电池、底电池器件的eqe曲线。
第三张图片,叠层器件相关的的表征。
有些类似于第二张图片,许秋暂定做六张图片:
叠层器件的结构示意图;
能级结构图,包括电极功函数、有效层和传输层hoo能级;
叠层器件效率随着顶电池和底电池厚度变化的二维图谱,类似于第一张图的b、c、d图,光电转换效率用颜色表示,并标注出等效率线;
最佳叠层器件的j-v特性曲线;
最佳叠层器件的eqe曲线,包括两个电池单独的eqe曲线和总的eqe曲线,同时简单分析电流损失分布;
不同光照强度下的最佳叠层器件的j-v特性曲线。
三张图片许秋已经全部绘制完毕。
其中,第一张图片是通用的,第二和三张图片,是许秋根据现有的体系,绘制出来的初代版本,之后如果更新了体系,直接更换即可。
平常发其他文章,还需要编编故事,讲一讲心路历程。
现在许秋准备投的这篇《科学》,反而不需要那些东西,简简单单把结果讲出来就可以。
毕竟,有器件效率这个最大的亮点进行支撑。
不过,现在叠层器件效率只有15,许秋觉得这个结果还是不够震撼。
如果能够上16、17,那就比较稳了。
如果能上20……
大概可以把工作一拆为二,一篇《自然》、一篇《科学》,也不用纠结到底是先投《自然》还是《科学》了,两边各发一篇。
当然,20这个数值,现在也就只能yy一下,一时半会儿根本做不上去。
在绘制第一张“半经验分析”图片时,许秋也有了另外一个想法:
现在y系列材料之所以不适合做叠层器件,主要还是因为没有与之匹配的顶电池材料,也就是光吸收边可以达到1100甚至1200纳米的有机光伏材料。
如果日后能开发出来一种与之适配的体系,说不定真能产生奇迹,把器件效率冲到20也说不定。
到时候,主要需要解决的问题可能就是“如何缩减超窄带隙有机光伏材料的能量损失”。
不过,那是之后的事情了,y系列二元单结体系的潜力,到现在还没有完全挖掘出来呢。
最近因为分配给y系列受体的算力比较少,一直没有什么亮眼的结果出来,y系列受体体系的最高效率还是卡在148上不去。
在《科学》文章的大框架做好后,许秋没有急着写正文,因为他打算投的是“报告”类型的工作,只有2500个字。
对现阶段的许秋来说,写这种短文就是分分钟的事情,爆肝的话,不到一周时间就能写完。
另外,也是因为这周四《无机功能材料》课程,要进行期末的ppt汇报,他需要花一些时间准备一下。
-->>(本章未完,请点击下一页继续阅读)【请收藏哇叽文学,wajiwenxue.com 努力为你分享更多好看的小说】